[ 高校数学 ] 逆関数の意味と求め方

Pocket

ここでは、逆関数についてポイントを整理しています。一体それは何の逆なんでしょうか?それとも、何が逆なんでしょうか?分かった気になって分かっていないことも多いです。何よりも「わたし」がそうです。自慢できることではありませんが。。。

スポンサーリンク

関数の意味

X, Y を実数の集合とした場合に、X の要素 x を決めると、それに応じて Y の要素 y が規則 f によってただ1つに定まるとき、この規則 f を関数と言い、y = f (x) と表します。

1:1の関数

関数 f について、X の異なる要素に対して Y の異なる要素が対応している場合、つまり

x1 ≠ x2 ⇒ f(x1) ≠ f(x2) ・・・①

が成り立つとき、関数 f(x) は1対1の関数であると言います。また、① の対偶を考えると、次のことが成り立ちます。

f(x1) = f(x2) ⇒ x1 = x2  ・・・②

例えば、y = x + 1 は1対1の関数となります。また、y = x2の場合は、実数全体を考えた場合は1対1ではないですが、定義域を x ≧ 0 に制限すると、1対1の関数であると言えます。

逆関数

関数 y = f(x) が1対1の関数であるとき、先に y の値を1つ定めると、x の値がただ一つに定まります。従って x は y の関数となります。この関数を f の逆関数といい、f-1 で表します。なお、f-1は、「f インバース(INVERSE )」と呼びます。英語で、「逆の、反対の」という意味でそのまんまです。

例えば、1対1の関数

y = 2x -2 ・・・①

を x に付いて解くと、x = (y + 2) / 2 となります。これが、逆関数の対応の規則であるので、この式の x と y を入れ替えて得られる

y = (x + 2) / 2 ・・・②

は①の逆関数となります。

つまり、f(x) = 2x -2, f-1(x) = (x + 2) / 2 となります。

逆関数の求め方

① y = f(x) を x について解く

② x と y を入れ替える

 ※ y = f(x) と y = f-1(x) では、定義域と値域が入れ替わる

逆関数のグラフ

関数 y = f(x) と、その逆関数 y = g(x) のグラフは、直線 y = x に関して対称となります。実際にグラフを書いて確認してみよう!レッツトライ!

最後に、ここでは1次関数の逆関数について考えてきましたが、2次関数、分数関数、指数関数、対数関数などの逆関数も同じように考えることができ、直線 y = x に関して対称となります。

スポンサーリンク

Pocket

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>